Robustness of Kriging when interpolating in random simulation with heterogeneous variances: Some experiments
نویسندگان
چکیده
This paper investigates the use of Kriging in random simulation when the simulation output variances are not constant. Kriging gives a response surface or metamodel that can be used for interpolation. Because Ordinary Kriging assumes constant variances, this paper also applies Detrended Kriging to estimate a non-constant signal function, and then standardizes the residual noise through the heterogeneous variances estimated from replicated simulation runs. Numerical examples, however, suggest that Ordinary Kriging is a robust interpolation method. 2004 Published by Elsevier B.V.
منابع مشابه
Taylor Kriging Metamodeling for Stochastic Simulation Interpolation
This paper applies a novel Kriging model to the interpolation of stochastic simulation with high computational expense. The novel Kriging model is developed by using Taylor expansion to construct a drift function for Kriging, thus named Taylor Kriging. The interpolation capability of Taylor Kriging for stochastic simulation is empirically compared with those of Simple Kriging and Ordinary Krigi...
متن کاملCustomized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping
This paper proposes a novel method to select an experimental design for interpolation in random simulation. (Though the paper focuses on Kriging, this method may also apply to other types of metamodels such as linear regression models.) Assuming that simulation requires much computer time, it is important to select a design with a small number of observations (or simulation runs). The proposed ...
متن کاملDesign and Analysis of “Noisy” Computer Experiments
Recently there has been a growing interest in using response surface techniques to expedite the global optimization of functions calculated by long running computer codes. The literature in this area commonly assumes that the objective function is a smooth, deterministic function of the inputs. Yet it is well known that many computer simulations, especially those of computational fluid and stru...
متن کاملSome properties of nested Kriging predictors
Kriging is a widely employed technique, in particular for computer experiments, in machine learning or in geostatistics. An important challenge for Kriging is the computational burden when the data set is large. We focus on a class of methods aiming at decreasing this computational cost, consisting in aggregating Kriging predictors based on smaller data subsets. We prove that aggregations based...
متن کاملAssimilating irregularly spaced sparsely observed turbulent signals with hierarchical Bayesian reduced stochastic filters
In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 165 شماره
صفحات -
تاریخ انتشار 2005